惠勒开始对史瓦西在1917年描述的引力坍塌物体非常感兴趣,这玩意儿也就是黑洞。
惠勒认为黑洞就是一个标准的终结体,无论是什么扔进黑洞,系统的无序度就永远消失了,因为没有任何物体可以从黑洞逃逸出来。
后来的许多工作都证明,黑洞确实是一个高度有序的终极压缩机,无论多么杂乱无章,都会在黑洞中心被压缩成无限小,包括……信息。
这种描述有点类似无神论者对“去世”这个概念的判定——没有生命气息,也没有灵魂前往地狱天堂。
但作为惠勒的学生,贝肯斯坦却不认同这点。
他提出也许信息并没有消失在黑洞,而是转化为了黑洞的一部分。
奈何当时没人相信贝肯斯坦的想法,直到霍金计算出了黑洞的面积定律,才给贝肯斯坦带来了灵感。
于是他顺势推出了赫赫有名的贝肯斯坦上限,证明了黑洞存在信息以及信息上限。
当然了。
最开始的时候霍金其实也不相信贝肯斯坦的这个结论,作为坚定的广义相对论拥护者,霍金认为这个小年轻是在碰瓷自己。
同时贝肯斯坦虽然有了正确的想法,然而他的论证不是非常准确,计算中存在许多的不确定性。
例如他只是说黑洞的熵正比于视界面积——在物理学中,正/反比其实是一个难以捉摸的词。
对于任何一个证明,物理学家都要求给出确切的比例。
例如引力和距离的平方成反比,磁场强度和距离的三次方成反比,那么黑洞熵呢?
是2倍的面积还是1/2倍的面积,这个数字得定下来。
就像网文里的加更一样,手速快的作者两万字才算加更,手速慢的作者七千字就算加更了。
不过很有意思的是。
后来霍金忽然意识到由于量子力学的不确定性原理,黑洞真的是会释放出一点点辐射的,并且满足黑体辐射的公式,即霍金辐射。
在这种情况下。
霍金转而接受了贝肯斯坦上限,并且靠着还算不错的数学功底,帮助他计算出了黑洞的热力学关系,将正比系数修正为了1/4。
因此这个公式被称为贝肯斯坦-霍金方程,也就是大名鼎鼎的bk方程组。
而bk方程组问世的时间……足足在如今的14年后。
所以面对自己亲手计算出来的结果,杨振宁依旧显得有些惊讶。
“可是不对啊……”
只见杨振宁在自己算出来的【sbh=akc^3/4hg】公式下划了道横,皱着眉头对徐云问道:
“小徐,除了数学,黑洞在逻辑上遵守热力学第二定律的原因是什么?它不是熵增的吗?”
常理来说。
如果黑洞具有熵,那它也应该具有温度。
一个东西如果有温度,那么即使这个温度再低,也都会产生热辐射。
可这样一来,黑洞的理论体积就存在问题了。
更关键的是……
它会让超大质量黑洞不存在。
“小徐,你看。”
杨振宁继续在公式上圈了几下,继续了自己的话:
“粒子温度和粒子能量,存在关系kt=e=hf,频率f最小只能是1赫兹。”
“所以温度最小只能是t=h/k,黑洞的辐射温度,最小也只能达到t=h/k。”
“也就是说h/k=hc/kr的情况下,此时黑洞半径r达到最大值。”
“如果黑洞半径再增加,就会违背量子力学,温度就会小于h/k。”
“因此根据黑洞熵理论,最大的黑洞半径就只能是c的数值,那么超大质量黑洞呢?岂不是不存在了?”
尽管此时徐云不在身边,但杨振宁依旧做出了一副面对面交谈的样子。
不知为何。
他莫名对徐云有了一种信心:
他相信徐云即便隔着电话,也能够理解自己的想法。
仿佛……二人曾经在某个时候,面对面的共同做过交流一样。
而正如他所说。
如果根据辐射公式,那么黑洞黑洞半径应该是存在一个极限的。
黑洞半径是r=2gm/c^2,所以可以计算出,黑洞熵允许的最大黑洞质量只能是m=c^3/2g。
这个数值就是10^35千克左右,也是黑洞熵允许的最大黑洞质量。
太阳质量是10^30千克上下,也就是大概10^5个……即十万倍的太阳质量。
可根据史瓦西的黑洞模型,别说十万倍了,比太阳重千万倍、一亿倍的超大质量黑洞,理论上也应该存在。